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Nucleation of long-range order in quenched Yukawa plasmas
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We discuss the nucleation from glassy to crystalline order in quenched one-component Yukawa plas-
mas as studied by molecular dynamics. Rapid quenches from T >4T, , to T <0.5T,,, were studied
and a range of Yukawa exponents were considered for systems with up to 10000 particles. We report on
the effect of system size on nucleation and the relevance of classical nucleation theory to the observed

nonequilibrium dynamics.
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The one-component plasma (OCP), i.e., interacting
charged particles in a nonresponding background of op-
posite charge, is of interest in areas as diverse as the as-
trophysics of compact objects [1], the interaction of laser
radiation with condensed systems, and the kinetics of col-
loidal suspensions [2]. Although the equilibrium proper-
ties of this system have been studied for many years [3], it
is only recently that the nonequilibrium properties have
been addressed [4].

We report here on a study of the homogeneous nu-
cleation of crystalline order in a rapidly quenched Yu-
kawa plasma using molecular dynamics (MD) simula-
tions. There have been a number of studies of the prob-
lem of homogeneous nucleation using MD [5-12]. Most
of these have considered the Lennard-Jones system or a
short ranged, hard-core potential. For shallow quenches,
these studies are consistent with classical nucleation
theory while for deep quenches (T gyench /Toere =3, the
interpretation has been less clear. System size is always
an issue in simulations, particularly in homogeneous nu-
cleation, since nonuniformities and boundaries induce, at
an enhanced rate, catastrophic growth of the stable
configuration from a metastable parent. Some authors
have argued that the onset of catastrophic crystal growth
is an artifact of periodic boundary conditions rather than
the formation of a critical fluctuation [8,9]. Others have
argued that size dependence and critical droplet mor-
phology might be affected by the existence of a ‘“pseudos-
pinodal” in the phase diagram with such effects becoming
more pronounced as the interaction range increases [13].
There have also been indications that for deep quenches,
the nucleating droplet exhibits a ramified structure over a
large portion of the computational cell [11]. The purpose
of the present study has been twofold: (1) to determine
the magnitude of the waiting time for the appearance of
an unstable fluctuation in a rapidly quenched Yukawa
OCP and (2) to determine the properties of the mode of
development of long-range correlations in a system in-
teracting with a longer-range potential.

The pair potential which we consider is given by

1063-651X/94/50(2)/1372(4)/$06.00 50

@lri)=elro/rjexp—ar;/rq) , (1)

where e=2Z%?2/r, is the interaction strength, Ze being
the ionic charge and r; the length scale defined in terms
of the ion number density n, that is, 1/n
=r3/V2=4ma*/3, a being the Wigner-Seitz radius. We
define the usual Coulomb plasma parameter
I'=ery/akgT, with T the temperature and kg
Boltzmann’s constant. We use units such that e=m
=n=1. The unit of time is then t,=n ~'3*(m /&)!/? and
in these units, the ion plasma frequency is given by
,;=3.756t, '. In the limit @—O0, the system approaches
the OCP limit for which the critical ' at melting is
r,=178%1[14].

For I'>T,, the OCP is known to crystallize in a bcc
lattice. The internal and Helmholtz free energies are also
accurately known [15] for both phases and it is therefore
possible to estimate the nucleating time, i.e., the waiting
time for the onset of catastrophic growth of the phase
from the metastable quenched configuration, by means of
classical nucleation theory [16]. This theory typically re-
lates the rate of formation of a critical droplet of phase B
(the final state) in phase 4 in the metastable configuration
(n, T) by an activated Arrhenius expression

=15 "'exp(—AF /k,T) , )

where 7, ! is an attempt frequency for surmounting the
free energy barrier along the appropriate path in
configuration space and AF' is the free energy per atom
of the critical nucleus relative to that of phase A, with
due account taken for the surface energy of state B:

AF'=(1/N)[Fp(n, T)+Fs3(n,T)—F n,T)] . (3

If the surface tension is known, then Eq. (3) may be
evaluated using the results of Slattery, Doolen, and
DeWitt [15] for F, and Fp. AF' s proportional to the
cube of the surface tension, and clearly, small changes in
this quantity can produce large changes in 7 45. One of
the major uncertainties in Eq. (2) is the surface energy,
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which is not known for the Yukawa system. The purpose
of this present set of simulations is to find values for 7 45
without relying on Eq. (2).

Our MD approach employs Nosé-Hoover dynamics
[17,18] to maintain the system at constant temperature.
Periodic boundary conditions were employed, and the
equations of motion were solved using a central difference
algorithm with a time step Az=0.03¢, in most of the
runs, although time steps of 0.005¢, were used in some of
them. The potential was truncated at a radius r,, such
that @(7,,,)/@(a) < 10~* and was shifted by —@(7,,) to
obtain a continuous potential. The number of neighbors
a given particle interacts with depends on the screening
parameter a; typical numbers are 1000 for a=1 and 600
for a=2. We start from a fluid state obtained by melting
and equilibrating a bcc or fcc crystal configuration to
I'=40 for 300¢,. The quenching procedure consists of
setting the thermostat reference temperature to the
desired value and letting the system evolve at this tem-
perature. The kinetic temperature of the particles settled
to the reference value within a time of 50¢,, with fluctua-
tions of order 1/N'/2. We refer to this as a rapid quench.
We explored rapid quenches within the range
350<TI <850.

Figure 1 shows the times for catastrophic nucleation in
N =1024 simulations, as determined from the onset of
the sharp decrease of internal energy with time. These
show a marked minimum, which for a=1 occurs at
'=~400. The final configuration for a=2 and 3 was bcc
with few defects, in agreement with the phase diagram
for Yukawa systems obtained by Kremer, Robbins, and
Grest [19]. For a=1 on the other hand, the final
configurations were distorted fcc structures. The range
in minima of nucleation times is from 7=300¢, for a=1
to 7=2800¢, for =3, with the value of I" at the minimum
of 7 ranging from I'=400 for a=1 to I'=2800 for a=3.
If we use T () from Ref. [20], these values of ' ()
are from 2-2.5 ' (a). It is of interest to compare
these results with the predictions of Eq. (2) for the OCP.
If we assume that the surface energy is proportional to
the melting temperature [21] with proportionality
coefficient A, i.e., Fg 3 =2ANkpT,, and take 75 ' =w
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FIG. 1. Onset of catastrophic growth (7) vs I':a=1 (squares);
a=2 (triangles); a=3 (asterisks); OCP limit (a=0, solid line)
from Eq. (2).
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then in order for the magnitude of the waiting time to be
correct, A=0.72, which results in a critical radius
T it =2.6, corresponding to a critical cluster of about 80
atoms. One may question the validity of the classical
description for so small a cluster size. However, it is in-
teresting to note that, according to this analysis, the
minimum for 7 for the OCP occurs at I"' =395, close to
the a=1 result for our Yukawa system, and also con-
sistent with recent Monte Carlo results for the OCP of
DeWitt, Slattery and Yang [22]. A full comparison with
Eq. (2) requires free energies, which are at present una-
vailable for the fluid state.

Estimates from classical nucleation theory give rather
small critical nuclei and indicate that, at least for the ini-
tiation of growth, we are not size-dominated for a system
size of N=1024. It is nevertheless important to assess
such effects. We have therefore carried out simulations
of systems with N =432, 1024, 3456, and 10032 particles,
for a=2 and Iy, =425. We have monitored several
quantities sensitive to local- and long-range order: the
mean square displacement, the x-ray structure factor
5(q,0)=(1/N)*{pgp_,), its angular average S(g,t), and
the pair distribution function g (r).

Figure 2 shows the internal energy per particle as a
function of time after quench. The final state for the
largest system (N =10032) is dramatically different from
the smaller size systems. For N =432, 1024, and 3456,
the final configuration is a nearly monolithic bcc crystal.
For N=10032, on the other hand, the system comes to
metastable equilibrium as a mosaic crystal with micro-
crystalline regions of size N =500 which remained stable:
the internal energy versus time was very nearly constant
(see Fig. 2) for as long as we were prepared to continue
the simulation. In this configuration, there are also re-
gions of fcc coordination. This is the predominant effect
of system size in our simulations. The time at which a
rapid drop in the internal energy occurs is a global mea-
sure of a nucleation time. The actual instability, we be-
lieve, occurs at earlier times. To investigate this, we di-
vided the periodic computational cell into subcells of size
N =125 and chose that subcell which exhibited the
greatest order, as determined by the appearance of stable

1.386 1.388

1.384

internal energy
1.382

N=10032

o

]

£ 4
o

Br 1
©

s

P L 1 1 1 1

500 1000 1500 2000 2500 3000

time (ty)

FIG. 2. Internal energy per particle, in units of &, as a func-
tion of time for various system sizes, all with =2 and I’ =425.
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peaks in S_(q,¢) for that subcell. For this subcell, we
monitored the value of a local order parameter,
Ng=maxy(1/N )z(pqp_q)cen, where q ranges over a
sphere of radius ¢ and ( pqp_q)cen is computed on the
subcell of size Ny. Figure 3(a) shows 74(¢) for two
different-sized systems. For N =10032 there is an insta-
bility at ~200¢, and for N =1024 at ~400¢,. The inter-
mediate case of N =3456 begins to transform at an inter-
mediate time, ~300¢,. In all systems there is a delay
from the time of quench to the time at which an instabili-
ty occurs. This is to be contrasted with what is observed
in Lennard-Jones systems, where nucleating droplets ap-
pear soon after quench [9-11]. In the smaller-size sys-
tem, growth leads to a single crystallite. We conclude
that the sudden catastrophic crystallization into a nearly
monolithic bcc crystal observed in the smaller systems
(N =432, 1024, and 3456) is caused by system size depen-
dencies and possibly triggered when single crystallites
grow to sizes comparable to the size of the computational
cell. The size of the largest system is sufficient to allow
the boundary energies of independent crystallites to ad-
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FIG. 3. (a) Parameter 74 as a function of time for a subcluster
in two different systems for N =10032 (solid line), and N =1024
(dotted line); the curves have been smoothed for clarity. (b)
Angular-averaged structure factor S(|q| =g, ?) for N=10032
(solid line), N =3456 (dashed line), N =1024 (dotted line).
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just and stabilize a polycrystal. This system-size behavior
can be seen more clearly in Fig. 3(b), which shows the
angle-integrated structure factor S(q..,?) as a function
of time ¢ for three different system sizes. There is a
growth region with nearly the same rate (slope) in all
three cases and a transition region, which seems to de-
pend on system size. (The linear slope is consistent with
a domain growth law of the Lifshitz-Slyozov type [23] in
which linear domain size increases at ¢!/3. We do not

FIG. 4. (a) Section of N =1024 system showing superimposed
atomic positions from 20 frames in the time interval
(340-400)t,; the section has edges [5,10,10] and the viewpoint is
at (87, —5, —9). (b) X-ray structure factor S .;(q,?) for the re-
gion shown in (a) at 1 =3961¢, and with |q| =gy, =7.052 64.
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know the detailed nature of the ‘“domain” that is grow-
ing, however). The transition into a nearly perfect crystal
occurs earlier for the smaller N =1024 system than for
the N =3456 case. The picture which emerges from the
size-dependent studies is that for systems of size
N >1000, an instability occurs at times in the range
200t,—-400t, and that smaller systems with a reduced
phase space may give an upper bound to homogeneous
nucleation times, provided the range of the potential is
sufficiently small relative to the periodic computational
cell size.

Simulations such as these are capable of shedding light
on the modes of instability which are important in con-
structing continuum, or Landau-Ginzburg theories of the
kinetics of crystallization. In the fluid state, real-space
variables are appropriate, and in the ordered phase, spec-
tral weight is concentrated in a reduced space of modes
indexed with q. In the Yukawa systems for the range of
a studied, we have found a striking tendency to form pla-
nar order and twist boundaries as precursors to full bcc
order. This is particularly apparent in the N =1024 sys-
tem. Figure 4(a) shows a view of a remapped section of
the original computational cell containing 512 atoms. it
is a time lapse exposure, i.e., a composite of 20 snapshots
taken every 3¢, from t=340t,-400t, (around the posi-
tion labeled A4 in Fig. 2). If we had a crystalline system,
properly oriented, this figure would show Debye-Waller
spheres of points with the spheres arranged on a lattice.
In this time interval, although there is clearly no lattice
and there is substantial diffusive motion, planes are al-
ready evident. Figure 4(b) shows S(q,?) at time ¢ =396t
averaged over 9t, for |q|=gqy... The (q,—q) pair of
peaks correspond to the set of planes evident in Fig. 4(a).
As time progresses, the planes become more coherent.
and a twist boundary appears, separating two regions of
[110] planes, with a twist angle of ~81°. One of these re-
gions grows at the expense of the other, until at the latest
stage (=1800¢,), eight of the eleven [110] planes have
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perfect bce coordination while three are defective. These
defective planes are the reason that the final value of
S(g,t) in Fig. 3(b) is ~ 6 rather than the value 10 reached
by the N =3456 system, where the final configuration is a
nearly perfect bee crystal. In the larger systems, the fluc-
tuating boundary regions on a local scale make this kind
of analysis more complicated. It is interesting to note in
this context that in these Coulomblike systems, the trans-
verse and longitudinal phonon frequencies differ substan-
tially [20] and shear motion is relatively easy.

In conclusion, we have carried out simulations for deep
quenches in one-component Yukawa plasmas in the
range I'=350-850 and for exponents a=1-3. The ma-
jority of these simulations have been done in the canoni-
cal ensemble (constant volume ¥V and constant tempera-
ture 7). A smaller number of runs were done in the
isobaric-isothermal ensemble (constant hydrostatic pres-
sure P and constant T), as a further check on boundary
or system size effects. The results in all cases showed no
qualitatively significant differences. We find rapid nu-
cleation times <10° Tplasma @0d polycrystalline final states
for the largest systems, with bcc grain sizes of order
N ~500. The nucleation time for fixed screening a is a
strong function of I' and shows a minimum, which for
smaller a approaches that predicted by classical nu-
cleation theory for the one-component plasma. In the
transition region where long-range order is nucleating,
we find a tendency for planar formation, rather than
droplet growth mediated by a diffusive surface. System
sizes of order N ~1000 are sufficient to estimate this in-
stability for the range of a considered, but in order to de-
scribe the later stage domain growth, larger systems
(N >4000) are necessary.
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